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In this work we demonstrate the possibility of including constraints in hard
systems, using the simple case of a dimer of hard spheres, where the analytical
solution exists. We make a detailed description of the model and show that the
system’s dynamics can be solved in a rigorous way. We also illustrate our
theoretical results with some numerical calculations on a simple diatomic liquid.
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1. INTRODUCTION

Molecular dynamics simulation was introduced by Alder and Wainwright (1)

for studying the motion of hard systems. Hard models have been extremely
useful for simulating a variety of fluids. Let us recall briefly the peculiari-
ties of the (exact) integration algorithm. In hard potential models, the par-
ticles move freely and the only interaction occurs at the moment of colli-
sion. Therefore, the simulation is essentially based on the calculation of the
collision times and on the kinematics of the collision: once the shortest
collision time has been computed, we propagate inertially the positions up
to that collision time and calculate the velocities of the hard spheres after
the collision. Then we reset all the velocities, define the new collision time,
and repeat the process. The major advantage of this method is that there is
no algorithmic error in the integration of motion. Moreover, when, as in
the case of hard spheres, the calculation of the collision times is simple, the
integration is very fast and one can follow the model dynamics for very
long times.



There have been several successful attempts to model more complex
systems using hard molecules of different forms, e.g., hard lines, (2, 3)

spherocylinders, (4) fused hard spheres, (5) etc. However, except for the case
of hard lines, described with detail in ref. 3, for any other non-spherical
body, the calculation of the collision time between two molecules is a
complex matter. In two examples given, (4, 5) the authors had to deal with a
highly complex equation for the collision time which was not trivial to
solve numerically. Therefore, they used a step-by-step approach, losing the
major advantage of hard systems. As for large polyatomic molecules, a
single polymeric molecule represented by a chain of hard spheres has been
simulated. (6, 7) There, the length of the bond between two hard spheres in
the chain was restricted to lie between the values s and s+ds, and the
atoms were moving freely between the collisions with other atoms or ‘‘bond
collisions.’’ Although brave, this approach has the problem of too many
bond collisions.
In the simulation of molecular systems, using molecular dynamics

based on continuous interaction potentials, the intramolecular strong
interactions are usually substituted by holonomic constraints. (8) It is an old
credo that models involving hard spheres are incompatible with exact con-
straints, and no work has been pursued in this area. In this paper we show
that it is possible to include constraints in hard systems and solve for their
dynamics in a rigorous way. An important difference between hard spheres
and hard molecules, is that our non-spherical molecules may re-collide
before hitting other molecules. (9, 10) In our algorithm re-collisions events are
taken into account.
The aim of this work is to highlight what is precisely implied in the

introduction of holonomic constraints into a model of hard spheres.
In the following three sections we describe the model for the case of a

diatomic liquid, where an analytical solution is at hand. The generalization
to polyatomic molecules connected by rigid bonds is analytically much
heavier although still feasible. Non-quadratic constraints are also treatable
but only using a numerical, non exact, integration algorithm. Therefore,
they lose some of the attractiveness of the hard systems. In Section 5 we
illustrate our results with a simple model calculation and in Section 6 we
draw some conclusions.

2. FREE MOTION OF TWO BOND CONSTRAINED HARD SPHERES

In this section we will discuss the motion in between collisions of a
single molecule consisting of two identical hard spheres each of mass m
connected by a bond constraint. The molecule translates and rotates
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around its center of mass. There are no external forces acting on the
molecule.
Let us call the two identical hard spheres forming a diatomic molecule,

S1 and S2, and their atomic positions r1 and r2. The center of mass (COM)
position R=1

2 (r1+r2) at time t is:

RF (t)=RF (0)+VF (0) t (1)

where RF (0), and VF (0) are the initial COM position and velocity. If a is the
distance between the centers of the spheres S1 and S2, the constraint
condition is:

s=(rF2−rF1)2−a2=0. (2)

The expression for the constraint force, Gi, on the atom i (i=1, 2), using
the constraint condition, is:

Gi=−l
“s

“ri
(3)

where l is the Lagrange multiplier associated to s. In our case the con-
straint force is the only force acting on the atoms in between collisions.
Denoting rF12=rF2−rF1, we write:

mrF̈1=GF1=2lrF12

mrF̈2=GF2=−2lrF12.
(4)

Using these expressions, we can also write the equations of motion of our
molecule in between collisions as:

MRF̈=0

mrF̈12=−4lrF12.
(5)

The solution of the last differential equation is:

rF12(t)=AF cos(wt)+BF sin(wt) (6)

with

w==4l
m
. (7)
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Imposing the initial conditions and solving for AF and BF we get:

AF=rF12(0)=rF2(0)−rF1(0)

BF=
vF2(0)−vF1(0)

w
=
vF12(0)
w
. (8)

Inserting the expression (6) in the constraint condition (2), we get:

A2 cos2(wt)+B2 sin2(wt)+2AFBF sin(wt) cos(wt)−a2=0 (9)

where, in principle, BF and w are functions of l. At t=0 we get A2=a2, and
at wt=p

2 we get B
2=a2, therefore, for any time t from (9) we obtain:

2AFBF sin(wt) cos(wt)=0 (10)

which means that AF must be orthogonal to BF . From Eq. (8) we see that
Eq. (10) just gives the kinematic condition to be satisfied by the initial
conditions, i.e., rF2(0)−rF1(0) orthogonal to vF2(0)−vF1(0). Using Eq. (8) and
remembering that B2=a2, for w we get:

w==(vF2(0)−vF1(0))
2

a2
(11)

and, for the Lagrange multiplier l,

l=
m(vF2(0)−vF1(0))2

4a2
. (12)

Returning to cartesian coordinates of each hard sphere in the molecule,

rFi(t)=RF (t) +
1
2 rF12(t) (13)

with i=1, 2, we can rewrite the parametric equations for their motion as:

rF1(t)=RF (0)+VF (0) t−
1
2
(rF2(0)−rF1(0)) cos(wt)−

vF2(0)−vF1(0)
2w2

sin(wt)

rF2(t)=RF (0)+VF (0) t+
1
2
(rF2(0)−rF1(0)) cos(wt)+

vF2(0)−vF1(0)
2w2

sin(wt)

(14)

with w defined by Eq. (11). Equation (14) describe the dynamics of the
rigid dimer of hard spheres in between collisions.
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3. SOLVING FOR THE COLLISION TIMES

Let us consider two molecules, the first (molecule 1) consisting of hard
spheres S1 and S2, and the second (molecule 2) consisting of hard spheres
S3 and S4. The COM’s of both molecules move on a straight line, until the
collision occurs:

RF 1(t)=RF 1(0)+VF1(0) t

RF 2(t)=RF 2(0)+VF2(0) t.
(15)

To calculate the collision time between these two molecules, we have to
calculate the times of the collisions between all the possible pairs of hard
spheres (S1 and S3, S1 and S4, S2 and S3, S2 and S4). The conditions for
these collisions are:

(rF3−rF1)2=d2

(rF3−rF2)2=d2

(rF4−rF1)2=d2

(rF4−rF2)2=d2

(16)

where d is the diameter of each hard sphere. Substituting the equations for
the position of each hard sphere as a function of time, Eq. (14), in the
collision conditions (16) we get a set of equations in t to be solved numeri-
cally. The solution gives the four collision times from which we take the
smallest one as the collision time of the two molecules.
Let us suppose that the collision occurs between the sphere S1 of the

molecule 1 and the sphere S3 of the molecule 2. We write the initial dis-
tance between the two molecules R2(0)−R1(0)=R12(0) and the difference
of molecular velocities V2(0)−V1(0)=V12(0). The angular velocities of the
molecules are w1 and w2. In this case, the first collision condition of
Eq. (16) reads:

(rF3−rF1)2=3RF 12(0)+VF12(0) t+
1
2
(rF12(0) cos(w1t)−rF34(0) cos(w2t))

+
vF12(0)
2w21

sin(w1t)−
vF34(0)
2w22

sin(w2t)4
2

=d2 (17)

Clearly, this collision condition is rather complex. Nevertheless, we can try
to simplify the problem. Consider two spherical molecules having the same
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diameter D=d+a. In this case we could solve the problem of this fictitious
collision the same way it has been solved in the standard hard sphere
models. (1) The quadratic equation in terms of the molecular centers of mass
is:

(RF 2−RF 1)2=(d+a)2 (18)

where the COM positions are described by the Eqs. (15). To solve this
equation we will first decide if the collision is possible. If the distance
between the COM’s of the two molecules is bigger than d+a, and the
molecules are receding or moving parallel, so

(RF 2−RF 1) • (VF2−VF1) \ 0, (19)

the collision will not be possible. In this case we reject the molecular pair
and proceed to the next one. Instead, if the left hand side of Eq. (19) is
smaller than 0, the two molecules are approaching and we have to proceed
to find the fictitious collision time, propagate the molecules till this point,
and then solve the Eq. (17). If the initial distance between the molecular
COM is less than d+a, we also have to proceed to solve Eq. (17), both if
the two molecules are approaching or receding.
In Fig. 1 we present the development of an example collision between

two molecules as a function of time (fcm corresponds to the value of
(RF 2−RF 1)2−(d+a)2 for the fictitious molecules of diameter d+a and f13,
f14, f23, and f24 to the values (rF3−rF1)2−d2, (rF4−rF1)2−d2, etc., respectively,
for the four possible pairs of atoms inside each molecule.
As can be seen from Fig. 1, the first collision between the two mole-

cules (in this example f24=0) occurs AFTER the fictitious collision
between the two molecules of diameter d+a has occurred. In this example
the initial distance between the two COM’s is less than d+a.
Thus, in this case, we can proceed directly to solve for exact collision

times, i.e., find where the various particle separation trajectories shown in
Fig. 1 cross the time axis. There are a number of methods to find roots of
equations, including for example Newton’s method, which we can apply in
a straightforward fashion at the moment when the distance between the
two molecules is equal (or less) to d+a. We have just to assure that the
first derivatives of the functions of Fig. 1 are negative. This will be a suffi-
cient condition to apply Newton, because it means that the two atoms
under consideration are approaching. Otherwise, if the first derivative is
positive, the two atoms are receding and a possible collision between them
may only happen much later than any collision between the pair of
approaching atoms.
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Fig. 1. Development of a collision between two molecules: fcm=(RF 2−RF 1)2−(d+a)2,
f13=(rF3−rF1)2−d2, f14=(rF4−rF1)2−d2, f23=(rF3−rF2)2−d2, and f24=(rF4−rF2)2−d2. The
intersections with zero correspond to the collisions between the hard spheres. All the functions
are in Å, the time unit is 10−13 s.

4. SOLVING FOR THE COLLISION BETWEEN TWO MOLECULES

Once we have the shortest collision time t, we have to solve the colli-
sion between the two molecules, finding the velocities of each hard sphere
after the collision in terms of their initial velocities. Let us suppose that the
first collision occurs between the hard sphere S1 of the molecule 1 and the
hard sphere S3 of the molecule 2. To find the final velocities we have to use
the conservation laws acting during the collision and to impose the con-
straint. The conservation laws are: 3 conservation conditions for linear
momenta, 3 for angular momenta and the conservation of the total kinetic
energy (assuming that the collision is completely elastic). They read:

vF1i+vF2i+vF3i+vF4i=vF1f+vF2f+vF3f+vF4f. (20)

rF1i×vF1i+rF2i×vF2i+rF3i×vF3i+rF4i×vF4i

=rF1f×vF1f+rF2f×vF2f+rF3f×vF3f+rF4f×vF4f (21)

v21i
2
+
v22i
2
+
v23i
2
+
v24i
2
=
v21f
2
+
v22f
2
+
v23f
2
+
v24f
2

(22)
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Now we have to take into consideration the constraint contribution during
the collision. Let us assume that the constraint force between the two
atoms can be split into two parts, i.e., G=−l “s

“ri
— (n+mŒd(t)) “s

“ri
. One is

the continuous part equal to n “s
“ri
, another is the discontinuous part which

acts only during the collision and can be written as mŒ d(t) “s
“ri
. The collisions

are instantaneous, so for an atom of mass m we can write the relation
between the impulse (the only force present is the constraint force) and the
change in the linear momentum as:

mvFf−mvFi=F
0+

0−
−l
“s

“r
dt=F

0+

0−
n
“s

“r
dt+F

0+

0−
mŒd(t)

“s

“r
dt. (23)

The first integral is equal to zero, while from the second one we get the
correction for the velocity due to the constraint force:

vFf−vFi=
1
m
“s

“r
F
0+

0−
d(t) mŒ dt=2

mŒrF12
m

— mrF12. (24)

Therefore, in the following equations describing the collision between the
molecules 1 and 2, we will denote this correction as m1rF12 for the atoms
belonging to the molecule 1, and as m2rF34 for the atoms belonging to the
molecule 2.
In this case the solution, taking into account constraint contribution

during the collision, can be written as:

vF1f=vF1i+DvF+m1rF12

vF2f=vF2i−m1rF12

vF3f=vF3i+DwF+m2rF34

vF4f=vF4i−m2rF34

(25)

defining the vectors DvF and DwF . Substituting into the momentum conser-
vation law, (20), we conclude that DwF=−DvF.
Now, let us differentiate the constraint condition s=0 with respect to

time, obtaining, (see Eq. (2)):

ṡ=rḞ
“s

“r
=2rF12rḞ12=2rF12vF12=0. (26)
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This gives us that the difference between the atomic velocities inside the
same molecule must be orthogonal to the distance between the two atoms
before and after the collision:

(vF2i−vF1i) • rF12=0

(vF2f−vF1f) • rF12=0

(vF4i−vF3i) • rF34=0

(vF4f−vF3f) • rF34=0.

(27)

From these expressions we get the following solutions for m1 and m2

m1=−
DvF • rF12
2a2

m2=
DvF • rF34
2a2

. (28)

Let us proceed with the remaining two conservation laws, (21) and (22).
We will use the standard approach to get the value of DvF, with a slight
modification to take into account the new terms containing m1 and m2.
Substituting (25) into the angular momentum conservation law (21)

and remembering that the atomic positions do not change during the
collision, Eq. (21) can be reduced to

(rF1−rF3)×DvF=0 (29)

meaning that DvF is parallel to (rF1−rF3). Denoting with Dv the magnitude of
the DvF, we write:

DvF=±Dv
(rF1−rF3)
|rF1−rF3 |

=±Dv
(rF1−rF3)
d

(30)

where we have used the fact that at the moment of collision |rF1−rF3 |=d.
Now, substituting (28) in (25); Eq. (25) in the kinetic energy conservation
law (22), and using once more Eq. (27), we get:

Dv2+
1
4a2
{(+DvF • rF12)2+(DvF • rF34)2}−

−
1
2a2
{(DvF • rF12)2+(DvF • rF34)2}+DvF • (vF1i−vF3i)=0 (31)
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from which, substituting DvF from Eq. (30), we obtain:

Dv=±
(vF1i−vF3i) • (rF1−rF3)

d · factor
(32)

with

factor=1−
[(rF1−rF3) • rF12]2+[(rF1−rF3) • rF34]2

4a2d2
. (33)

Summarizing the above developments, Eqs. (25), (28), (32), and (33) can be
used to obtain the final velocities of the four hard spheres participating in
the collision in terms of their initial velocities.

5. COMPUTER SIMULATION OF A TEST CASE

We simulated liquid nitrogen at 93 K with the density of 781 kg/m3,
corresponding to the liquid nitrogen sample simulated by Barojas and
Levesque near the boiling point, (12) and a sample at 80 K with the density
of 874 kg/m 3, corresponding to the nitrogen at the triple point. The initial
configuration consisted of 256 molecules, and corresponds to the alpha-
phase of nitrogen described in ref. 11. Initial molecular translation and
rotation velocities were assigned according to equipartition. We took the
distance between the centers of the nitrogen atoms equal to 1.0999 Å, same
as in ref. 12, and the atomic diameter equal to 3.341 Å, equal to the s of
the Lennard Jones potential of ref. 12.
The initial model crystal was relaxed during 0.15 ns. In order to know

if our model describes properly a diatomic liquid, we measured velocity
autocorrelation functions, separating the components parallel and perpen-
dicular to the molecule. Using these functions, we obtained corresponding
diffusion coefficients.
Denoting as RF (0) the initial molecular positions and RF (t) the molecu-

lar positions at time t, the self-diffusion coefficient D is given by the
expression: (13)

D=
1
6t

O|RF (t)−RF (0)|2P (34)

where

O|RF (t)−RF (0)|2P= lim
TQ.

1
T
F
T

0
|RF (t+y)−RF (t)|2 dy (35)
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is equal to the ensemble average in thermodynamic limit. Using the velocity
autocorrelation functions, we can obtain the diffusion coefficient in terms
of relaxation time yG, using the expression: (12)

D=
kBTsyG
m

(36)

where kB is the Boltzmann constant, Ts is the system’s temperature and the
relaxation time can be calculated as

yG=F
.

0
Fv dt (37)

where Fv is the normalized velocity autocorrelation function,

Fv= lim
TQ.

1
T
F
T

0
vF(t+y) • vF(t) dy. (38)

It is possible to use an intrinsic reference frame attached to each molecule
to study anisotropic behavior of the time-correlation functions. In this
frame the molecular velocity has been separated into parallel and perpen-
dicular components, and the time correlation functions for these compo-
nents have been computed. These quantities are never equivalent to the
time correlation functions in the laboratory frame although one can obtain
the exact correspondence OVF (t) • VF (0)P=OVF||(t) • VF||(0)P+2OVF+ (t) • VF+ (0)P.
The molecular velocity autocorrelation functions for the parallel and

perpendicular components for the sample with density 781 kg/m 3 and
temperature 93 K are presented in Fig. 2, while the total and angular
velocity autocorrelation functions are presented in Fig. 3. Our results
compare favorably with those obtained by Allen and Imbierski, (5) for the
total molecular velocity, and with those calculated by Ryckaert et al. (14)

From Figs. 2 and 4 we see that the diffusion coefficients for perpendicular
component of molecular velocity for both samples are considerably smaller
than those for the parallel component, in good agreement with, (14) where it
was observed that the perpendicular component autocorrelation function
goes to zero faster, then the parallel one. The calculated value of the
diffusion coefficient in the direction parallel to the molecule gives
2.76×10−5 cm2/s for the temperature of 93K and density 781 kg/m3, and
in the perpendicular direction 2.04×10−5 cm2/s (i.e., D=1

3 (D||+2D+ )=
2.28×10−5 cm2/s). The corresponding value of the self-diffusion coefficient
obtained from the total velocity autocorrelation function using the
Lennard-Jones model of Barojas et al, (12) is 2.5×10−5 cm2/s in satisfactory
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Fig. 2. Molecular velocity autocorrelation function of the parallel component,
OVF||(t) • VF||(0)P and perpendicular component, OVF+ (t) • VF+ (0)P. Density 781 kg/m 3, tempera-
ture 93 K and the time unit is 10−13 s.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

F
(t

)

t

’V_traslational’
’V_angular’

Fig. 3. Translational velocity, OVF (t) • VF (0)P and angular velocity autocorrelation function,
OwF (t) • wF (0)P. Density 781 kg/m3, temperature 93 K and the time unit is 10−13 s.
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Fig. 4. Molecular velocity autocorrelation function of the parallel component,
OVF||(t) • VF||(0)P and perpendicular component, OVF+ (t) • VF+ (0)P. Density 874 kg/m 3, tempera-
ture 80 K and the time unit is 10−13 s.

agreement with our result. In Fig. 4 we present the molecular velocity
autocorrelation functions for the velocity components parallel and per-
pendicular to the molecule for the case of the density 874 kg/m3 and tem-
perature 80K, which shows the correct trend as a function of density.

6. CONCLUSIONS

We have shown, in the simple case of a dimer of hard spheres, where
one can provide an analytic solution, that bond constraints and percussive
forces can be combined together in a simple and elegant way. In presence
of many bond constraints the solution, conceptually, does not change
much: the equations of motion give, instead of a simple harmonic oscilla-
tion, a coupled system of oscillators which in principle can be solved
through normal modes (so determining the values of Lagrange multipliers
in between collisions). The collision is solved in the same way we presented
here and the total procedure keeps its feasibility. It can be useful when
modeling linear polymers or otherwise, but only using bond constraints.
In principle the situation with general holonomic constraints is not

difficult. However, since the solution of the equations of motion for given
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l’s is no longer analytic, one has to solve it in a step by step fashion using
an approximate algorithm. As a result the simplicity of the approach is lost
and such a model does not seem worth pursuing.

ACKNOWLEDGMENTS

We are pleased to thank David Coker for a critical reading of the
manuscript.

DEDICATION

The work presented here is, in some sense, a theoretical divertissement
which the senior author (GC) is pleased to dedicate to Gianni Jona Lasinio
on the occasion of his 70th birthday.

REFERENCES

1. B. J. Alder and T. E. Wainwright, Studies in molecular dynamics. I. General method,
J. Chem. Phys. 31:459–466 (1959).

2. D. Frenkel and J. F. Maguire, Molecular dynamics study of infinitely thin hard rods:
Scaling behavior of transport properties, Phys. Rev. Lett. 47:1025–1028 (1981).

3. D. Frenkel and J. F. Maguire, Molecular dynamics study of dynamical properties of an
assembly of infinitely thin hard rods,Mol. Phys. 49:503–541 (1983).

4. D. W. Rebertus and K. M. Sando, Molecular dynamics simulation of a fluid of hard
spherocylinders, J. Chem. Phys. 67:2585–2590 (1977).

5. M. P. Allen and A. A. Imbierski, A molecular dynamics study of the hard dumb-bell
systems,Mol. Phys. 60:453–473 (1987).

6. D. C. Rapaport, Molecular dynamics simulation of polymer chains with excluded volume,
J. Phys. A: Math. Nuc. and Gen. 11:L213–L217 (1978).

7. D. C. Rapaport, Molecular dynamics study of a polymer chain in solution, J. Chem. Phys.
71:3299–3303 (1979).

8. J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, Numerical integration of the cartesian
equations of motion of a system with constraints: Molecular dynamics of n-alkanes,
J. Comp. Phys. 23:327–341 (1977).

9. A. Mukoyama and Y. Yoshimira, Hundreds of collisions between two hard needles,
J. Phys. A: Math. Gen. 30:6667–6670 (1997).

10. M. P. Allen, G. T. Evans, D. Frenkel, and B. M. Mulder, Hard convex body fluids, Adv.
Chem. Phys. 86:1–166 (1993).

11. O. Schnepp and A. Ron, Lattice dynamics and spectral line widths of a−N2, Discussions
Faraday Soc. 48:26–37 (1969).

12. J. Barojas, D. Levesque, and B. Quentrec, Simulation of diatomic homonuclear liquids,
Phys. Rev. A 7:1092–1105 (1973).

13. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, London,
1976), p. 199.

14. J. P. Ryckaert, G. A. Bellemans, and G. Ciccotti, The rotation-translation coupling in
diatomic molecules,Mol. Phys. 44:979–996 (1981).

714 Ciccotti and Kalibaeva


	1. INTRODUCTION
	FREE MOTION OF TWO BOND CONSTRAINED HARD SPHERES
	SOLVING FOR THE COLLISION TIMES
	SOLVING FOR THE COLLISION BETWEEN TWO MOLECULES
	COMPUTER SIMULATION OF A TEST CASE
	CONCLUSIONS
	ACKNOWLEDGMENTS
	DEDICATION

